Transcriptional regulation of furA and katG upon oxidative stress in Mycobacterium smegmatis.
نویسندگان
چکیده
The DNA region upstream of katG in Mycobacterium smegmatis was cloned and sequenced. The furA gene, highly homologous to Mycobacterium tuberculosis furA, mapped in this region. The furA-katG organization appears to be conserved among several mycobacteria. The transcription pattern of furA and katG in M. smegmatis upon oxidative stress was analyzed by Northern blotting and primer extension. Although transcription of both furA and katG was induced upon oxidative stress, transcripts covering both genes could not be identified either by Northern blotting or by reverse transcriptase PCR. Specific transcripts and 5' ends were identified for furA and katG, respectively. By cloning M. smegmatis and M. tuberculosis DNA regions upstream of a reporter gene, we demonstrated the presence of two promoters, pfurA, located immediately upstream of the furA gene, and pkatG, located within the terminal part of the furA coding sequence. Transcription from pfurA was induced upon oxidative stress. A 23-bp sequence overlapping the pfurA -35 region is highly conserved among mycobacteria and streptomycetes and might be involved in controlling pfurA activity. Transcription from a cloned pkatG, lacking the upstream pfurA region, was not induced upon oxidative stress, suggesting a cis-acting regulatory role of this region.
منابع مشابه
Mycobacterial FurA is a negative regulator of catalase-peroxidase gene katG.
In several bacteria, the catalase-peroxidase gene katG is under positive control by oxyR, a transcriptional regulator of the peroxide stress response. The Mycobacterium tuberculosis genome also contains sequences corresponding to oxyR, but this gene has been inactivated in the tubercle bacillus because of the presence of multiple mutations and deletions. Thus, M. tuberculosis katG and possibly ...
متن کاملMycobacterium tuberculosis FurA autoregulates its own expression.
The furA-katG region of Mycobacterium tuberculosis, encoding a Fur-like protein and the catalase-peroxidase, is highly conserved among mycobacteria. Both genes are induced upon oxidative stress. In this work we analyzed the M. tuberculosis furA promoter region. DNA fragments were cloned upstream of the luciferase reporter gene, and promoter activity in Mycobacterium smegmatis was measured in bo...
متن کاملMapping of Mycobacterium tuberculosis katG promoters and their differential expression in infected macrophages.
Intracellular pathogenic bacteria, including Mycobacterium tuberculosis, frequently have multitiered defense mechanisms ensuring their survival in host phagocytic cells. One such defense determinant in M. tuberculosis is the katG gene, which encodes an enzyme with catalase, peroxidase, and peroxynitritase activities. KatG is considered to be important for protection against reactive oxygen and ...
متن کاملThe Metal-Dependent Regulators FurA and FurB from Mycobacterium Tuberculosis
The ferric uptake regulators (Fur) form a large family of bacterial metal-activated DNA-binding proteins that control a diverse set of genes at the transcriptional level. Mycobacterium tuberculosis, the causative agent of tuberculosis, expresses two members of the Fur family, designated FurA and FurB. Although both belong to the same family, they share only approximately 25% sequence identity a...
متن کاملRegulation of the ahpC Gene Encoding Alkyl Hydroperoxide Reductase in Mycobacterium smegmatis
The ahpC (MSMEG_4891) gene encodes alkyl hydroperoxide reductase C in Mycobacterium smegmatis mc2155 and its expression is induced under oxidative stress conditions. Two well-defined inverted repeat sequences (IR1 and IR2) were identified in the upstream region of ahpC. Using a crp (cAMP receptor protein: MSMEG_6189) mutant and in vitro DNA-binding assay, it was demonstrated that the IR1 sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 183 23 شماره
صفحات -
تاریخ انتشار 2001